Scanner data and multilateral price index methods

UN GWG on Big Data for Official Statistics Workshop on Scanner Data and Official Statistics Kigali, Rwanda, 29 April – 1 May 2019

Delivering insight through data for a better Canada

Outline

- Three classes of multilateral index methods:
 - GEKS method
 - Geary-Khamis method
 - Time Product Dummy (or fixed effects) method
- Length of index estimation window
- Extension methods

Statistique

Canada

- Monitoring and quality control
- Conclusion

Classes of multilateral index methods

- Methods traditionally used in the spatial comparison of price levels
- Comparison should be independent of the choice of base country/region:
 - methods are transitive
- Recently adapted to temporal comparison of price levels
- Use weights at product level
- Are free of chain drift
- Multilateral methods and their applications:

Multilateral method	Expenditure data needed?	Known application
GEKS-Törnqvist	Yes	Australia: Grocery data New Zealand: Electronics
GEKS-Jevons	No	Does not take advantage of available sales data!
Geary-Khamis (GK)	Yes	Netherlands: Almost all scanner data including supermarkets data
Time Product Dummy (TPD)	Yes/No, both versions possible	New Zealand: Rental prices
Time Dummy Hedonic (TDH)	Yes/No, both versions possibleNeeds detailed attribute data	Usually considered for consumer electronics

GEKS method

- Gini (1931); Eltetö and Köves (1964) and Szulc (1964)
- Estimation window [0, *T*]. For *t* in [0, *T*]:

$$P^{0,t} = \prod_{z=0}^{T} \left(\frac{P^{0,z}}{P^{t,z}}\right)^{\frac{1}{T+1}}$$

- T+1 bilateral price indexes $P^{0,z}$, z = 0, 1, ..., T
- T+1 bilateral price indexes $P^{t,z}$, z = 0, 1, ..., T
 - $P^{0,t}$ is calculated through T+1 paths: $P^{0,z} P^{z,t}$
 - None of these paths should be preferred to the others
 - Geometric average of these *T*+1 results

GEKS method

- Bilateral index formula:
 - · Needs to satisfy the time reversal test
 - Fisher index
 - Törnqvist index
 - Jevons index (not so relevant in the context of scanner data!)
- If the dataset has limited/no characteristics but we have expenditure information, we can use a superlative bilateral index formula (e.g. Törnqvist, Fisher)
- If the dataset has no expenditure information, we can use an unweighted bilateral formula (e.g. Jevons)

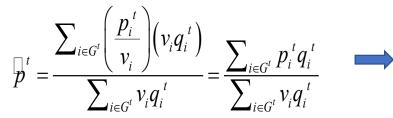
Geary-Khamis method

- Geary (1958) and Khamis (1972)
- For an homogeneous product, in a given time period, price equals unit value:
 - Unit value = (total sales value) / (total quantity sold)

•
$$p_i^t q_i^t = \left(\frac{p_i^t}{v_i}\right) (v_i q_i^t)$$
 for a product *i* available in period *t*

• v_i is a quality adjustment factor for product *i*.

•
$$\left(\frac{p_i^t}{v_i}\right)$$
: Quality adjusted prices; $\left(v_i q_i^t\right)$: Adjusted quantities


- Adding up quantities of dissimilar goods to form the unit value index isn't necessarily meaningful
- Use standardized or quality-adjusted quantities
- Apply quality adjustment factors to the various item quantities to express them in terms of a "base" product, and then simply add them up

Geary-Khamis method

• Quality adjusted unit value:

"Quality adjusted prices" and "adjusted quantities" world

• GK price index between 0 and *t*:

$$P^{0,t} = \frac{p^{t}}{p^{0}}$$

$$P^{0,t} = \frac{\left(\sum_{i \in G^{t}} p_{i}^{t} q_{i}^{t}\right) / \left(\sum_{i \in G^{t}} v_{i} q_{i}^{t}\right)}{\left(\sum_{i \in G^{0}} p_{i}^{0} q_{i}^{0}\right) / \left(\sum_{i \in G^{0}} v_{i} q_{i}^{0}\right)}$$
• (1)
$$P^{0,t} = \frac{\left(\sum_{i \in G^{t}} p_{i}^{t} q_{i}^{t}\right) / \left(\sum_{i \in G^{0}} p_{i}^{0} q_{i}^{0}\right)}{\left(\sum_{i \in G^{t}} v_{i} q_{i}^{t}\right) / \left(\sum_{i \in G^{0}} v_{i} q_{i}^{0}\right)}$$

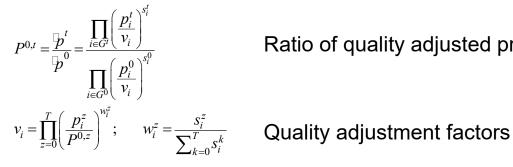
"Change in total sales from 0 to *t*", "Weighted quantity index"

- (2) $v_i = \frac{\sum_{z=0}^{T} (q_i^z p_i^z) / P^{0,z}}{\sum_{z=0}^{T} q_i^z}$ "Weighted deflated prices": reference prices
- Need to solve (1) and (2) simultaneously; iterative algorithms typically used

Time Product Dummy method

- · Country Product Dummy method in the spatial price comparison
- Product prices in month t follows a stochastic model:

$$\ln p_i^t = \alpha + \delta^t + \gamma_i + \varepsilon_i^t$$


 γ_i :Product fixed effects δ^t :Time fixed effects α :Intercept ε_i^t :Error terms, with a normal distributioni:an individual product (UPC/SKU)

- Estimation method:
 - Weighted least squares regression
 - Expenditure shares S_i^t as weights
- Let $v_i = \exp(\hat{\gamma}_i)$. It can be shown that for a set of products G^t ,

Time Product Dummy method

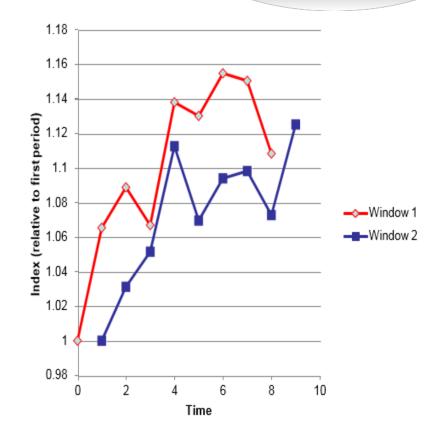
• Time Product Dummy index between 0 and *t*:

Ratio of quality adjusted prices

- Close similarities with GK method ٠
- Indexes can be calculated using the regression framework or an iterative algorithm as for GK ٠

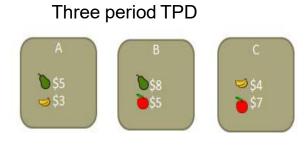
Length of index estimation window

- Estimation windows shorter than a year:
 - Problematic with seasonal products
- Estimation windows larger than a year:
 - Differences with respect to 13-month window estimation are generally small for published classes level
 - Bilateral indexes between all pairs of months of the window are used:
 - A very large window may lead to a loss of characteristicity
 - The estimated price change does not actually pertains only to the two periods under comparison
- A 13-month window is typically used
 - ABS chose a window of 5 quarters for their quarterly CPI


Extension methods

- Why index series extension?
- Index estimation based on a fixed window [0, T]
- Data from new period T+1 can alter comparisons between earlier periods
- CPI is non revised

Statistique


Canada

- How do we form a multilateral "window" incorporating the current period?
- How do we splice the results onto previous index levels?

Extension methods

20	Charles and the
	0.00
9	-0.68
•	-0.30
А	0.00
В	0.30
С	0.46

$I_{TPD}^{A,B} =$	$\exp(\delta^B) = 1.25$
TPD -	$exp(\delta^A) = 1.55$

0	0.00
9	-0.61
•	-0.37
A	0.00
В	0.37
С	0.50
D	0.62

€\$5 €\$3

)\$8 \$5

 $I_{TPD}^{A,B} = \frac{\exp(\delta^B)}{\exp(\delta^A)} = 1.45$

11

Statistics Canada

Statistique

Canada

Extension methods

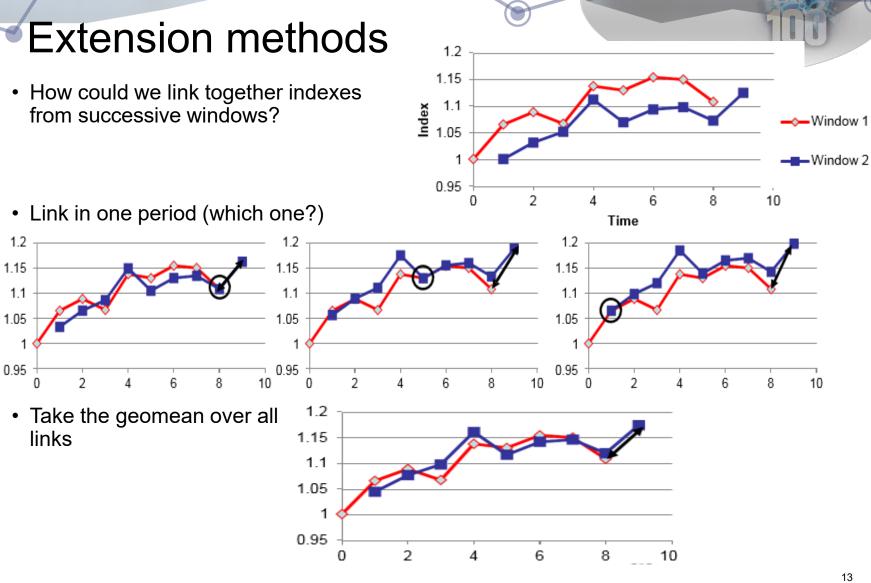
Rolling or expanding window approaches

Rolling window							
time	0	1	2		t	t+1	t+2
		-	-	-	1		
		1	-	-	-	1	
				-	-	-	

- Fixed length
- Variable start point

Expanding window								
time	0	1	2		t-1	t	t+1	t+2
	1							
	1	-						
	T	-	-	-	1			
	I	-	-	-	-			
							-	

- Variable length
- Fixed start point (can be updated from time to time)


 How could we link together indexes from successive windows?

Statistics

Canada

Statistique

Canada

Monitoring and quality control

- Important to have clearly defined checks and analyses on the data:
 - So large that any manual verification will not work
- Quality control before index calculation:
 - Has each new file been read correctly?
 - Plot time series of sample sizes
 - Plot time series of the number of unique products classified to each CPI lowest level class
 - Plot time series of the total sales of all products classified to each CPI lowest level class

Monitoring and quality control

- Quality control after index calculation
 - Decide on which elementary aggregates/published classes need to be reviewed after index calculation
 - Develop tools to identify CPI aggregates with unusual month over month price changes or unusual twelve-month price changes
 - Investigate on the main drivers of the identified 'outliers' and decide on their treatment
 - Develop decomposition tools that help with explaining price movements

Conclusion

- Multilateral index methods:
 - · use sales and quantity data
 - give transitive index formula
 - are free of chain drift
- Product definition should be determined before using a multilateral index method
- All three method classes generally give similar price index results, but not exactly the same index values!

Conclusion

- Development of multilateral index methods has benefited from the availability of big and rich scanner data
- Do participants countries' statistical agencies already have access to retail scanner data?
 - How important are the consumer purchases made from retailers equipped with scanner registers in the different countries?
 - Are retailers not willing to cooperate in sharing their scanner data?
 - Any other issues?

Questions?

Thank you!

Statistics Statistique Canada Canada

Delivering insight through data for a better Canada

